W	WARNING Any malpractice or any attempt to commit any kind of malpractice in the Examination will DISQUALIFY THE CANDIDATE.						
				MATHEMATIC			
Ve Co	rsion de	B1		n Booklet umber :			
Tir	me: 150 M	linutes	Numb	per of Questions: 120 Maximum Marks: 480			
Na	me of the	Candida	te	C (C) Tas-1			
Ro	ll Number		14.1 3(2)		. Ingda		
Sig	gnature of	the Cano	didate	10.			
1	Lat.	pa & Tomba	INSTRUC	CTIONS TO CANDIDA	TES		
2.	with the sa IMPORTA Please fill above. Ple	ANT. the items ase also v	on Code as i	in the Admit Card from the manner, Roll Number and Si on Booklet Serial Number	aced with a Question Booklet e Invigilator. THIS IS VERY gnature in the columns given r given at the top of this page		
3.	This Ques suggested 'Most App	and given propriate A	klet contain against (A Answer,' Ma Answer' in t	s 120 questions. For each, (B), (C), (D) and (E) our the bubble containing	ch question five answers are of which only one will be the the letter corresponding to the by using either Blue or Black		
4.	penalization number of ONE mark	on formula wrong an	a based on nswer marked deducted for	the number of right answerd. Each correct answer were each incorrect answer. Meanswer.	the score will be subjected to wers actually marked and the vill be awarded FOUR marks. More than one answer marked will be negatively marked.		
5.	Please rea	nd the ins	structions in	n the OMR Answer She	eet for marking the answers.		

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

SHOULD VOIGHT THE THE UNESTION BOOKS TO CONTAINS AN THEM.

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 PRINTED PAGES 32.

1.	The domain of the function f given by $f(x) = \sqrt{x-1}$ is						
	(A) $(-\infty,\infty)$	(B) (1,∞)	(C) [1,∞)	(D) $[0, \infty)$	(E) (0,		

- 2. Let $f(x) = -2x^2 + 1$ and g(x) = 4x 3, then $(g \circ f)(-1)$ is equal to

 (A) 9 (B) -9 (C) 7 (D) -7 (E) -8
- 3. Let A and B be finite sets such that n(A-B)=18, $n(A\cap B)=25$ and $n(A\cup B)=70$. Then n(B) is equal to
 - (A) 52 (B) 25 (C) 27 (D) 43 (E) 45
- 4. In a group of 100 persons, 80 people can speak Malayalam and 60 can speak English. Then the number of people who speak English only is
 - (A) 40 (B) 30 (C) 20 (D) 25 (E) 35

If * is a binary operation defined by $a*b = \frac{a}{b} + \frac{b}{b} + \frac{1}{b}$ for positive integers a and b, then 2 * 5 is equal to a grant and the state of the state (D) 1 (E) 5 (B)3(A)4If $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6\}$, then A - B =6. (B) $\{0,1,3,5,6\}$ (A) $\{1,3,5,6\}$ $(E) \{2,4\}$ (D) {1,2,3,4,5,6} Let $A = \{2,3,4,5\}$, $B = \{36,45,49,60,77,90\}$ and let R be the relation 'is factor of' 7. from A to B. Then the range of R is the set (B) {36,45,60,90} $(A) \{60\}$ (E) {36,45,49,60,77,90} (D) {49,60,77} The real part of $e^{(3+4i)x}$ is 8. (A) e^{3x} (B) $\cos 7x$ (E) 0 (D) $e^{3x} \sin 4x$ If z = x - iy and $z^{1/3} = p + iq$, then $\frac{1}{p^2 + q^2}$ 9. (E)0

Space for rough work

(D) 2

(C) 1

(A) -2

(B) -1

- Let z = x + iy be a complex number such that |z + i| = 2. Then the locus of z is a circle 10. whose centre and radius are
 - (A) (0, -1); 2
- (B)(0,2);2

- (D) $(0, -1); \sqrt{3}$
- If 2 + i is a root of $x^2 4x + c = 0$, where c is a real number, then the value of c is 11.
 - (A) 2

- (C) 4 (D) 5 (E) 0
- Let z_1 and z_2 be complex numbers satisfying $|z_1| = |z_2| = 2$ and $|z_1 + z_2| = 3$. 12.

- The principal argument of the complex number $z = \frac{1 + \sin \pi i \cos \pi}{1 + \sin \pi + i \cos \pi}$ is 13.
 - $(A) \frac{\pi}{3} \qquad (B) \frac{\pi}{6}$

- (D) $\frac{\pi}{2}$ (E) $\frac{\pi}{4}$

14. If $z_1 = 2 + 3i$ and $z_2 = 3 + 2i$, then $|z_1 + z_2|$ is equal to

- (A) 50
- (C) $5\sqrt{2}$
- (D) 25

 $\frac{10i}{1+2i}$ is equal to 15.

- (A) -2i
- (B) 2i
- (D) 4 + 2i

The value of $\sum_{k=1}^{10} (3k^2 + 2k - 1)$ is 16.

- (A) 1120 (B) 1200 (C) 1230 (D) 1265 (E) 1255

The numbers $a_1, a_2, a_3,...$ form an arithmetic sequence with $a_1 \neq a_2$. The three 17. numbers a_1 , a_2 and a_6 form a geometric sequence in that order. Then the commor difference of the arithmetic sequence is

- (A) a_1
- (B) $2 a_1$
- (C) $3 a_1$
- (D) $4 a_1$
- (E) $5 a_1$

In an arithmetic sequence, the sum of first and third terms is 6 and the sum of second 18. and fourth terms is 20. Then the 11th term is

- (A) 67
- (B) 62
- (C)57
- (D) 73
- (E)66

19.	In an A.P., the first term is 3 and the last term is 17. The sum of all the terms in the sequence is 70. Then the number of terms in the arithmetic sequence is							
	(A) 7	(B) 5	(C) 9	(D) 6	(E) 8			
20.		e set of all positions as 30 in their love			han 1 and that ha	ive		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5			
21.	If p , q and then $p + q =$	23 is an increasin	g arithmetic sequ	ence and p and q	are prime number	ers,		
	(A) 22	(B) 24	(C) 26	(D) 28	(E) 30			
22.	The 5 th and	7 th terms of a G.P.	are 12 and 48 res	pectively. Then th	e 9 th term is			
	(A) 162	(B) 96	(C) 192	(D) 144	(E) 182			
23.	The number	of positive intege	rs less than 1000 l	naving only odd d	igits is			
	(A) 155	(B) 177	(C) 55	(D) 205	(E) 85			
			Space for rough work	C to the	il.v			

- 24. Five points are marked on a circle. The number of distinct polygons of three or more sides can be drawn using some (or all) of the five points as vertices is
 - (A) 10
- (B) 12
- (C) 14
- (D) 16
- The middle term in the expansion of $\left(1+\frac{1}{5}\right)^{20}$ is 25.

- (A) $\left(\frac{1}{5}\right)^{10}$ (B) $\left(\frac{1}{5}\right)^{11}$ (C) $^{20}C_{11}\left(\frac{1}{5}\right)^{11}$ (D) $^{20}C_{9}\left(\frac{1}{5}\right)^{9}$ (E) $^{20}C_{10}\left(\frac{1}{5}\right)^{10}$
- $^{11}C_0 + ^{11}C_1 + ^{11}C_2 + ^{11}C_3 + ^{11}C_4 + ^{11}C_5 =$ 26.
 - (A) 2^6
- (B) 2^8
- (C) 2^{10}
- (D) 2^{11}
- If ${}^{n}P_{r} = 840$ and ${}^{n}C_{r} = 35$, then the value of r is equal to 27.
 - (A) 2
- (B) 4
- (C) 6
- (D) 3
- (E) 5
- The sum of the coefficients in the expansion of $(1+2x-x^2)^{20}$ is 28.
 - (A) 2^{20}
- (B) 2^{21}
- (C) 2^{19}
- (D) 2^{40}
- (E) 2

- The number of ways a committee of 4 people can be chosen from a panel of 10 people 29. is
 - (A) 315
- (B) 240
- (C) 210
- (D) 720
- (E) 120
- If $A = \begin{pmatrix} 6 & 2 \\ 7 & -5 \end{pmatrix}$ and $A B = \begin{pmatrix} -2 & 1 \\ 4 & -9 \end{pmatrix}$, then $B = \begin{pmatrix} -2 & 1 \\ 4 & -9 \end{pmatrix}$ 30.

- (A) $\begin{pmatrix} -8 & -1 \\ 3 & 4 \end{pmatrix}$ (B) $\begin{pmatrix} 8 & 1 \\ -3 & -4 \end{pmatrix}$ (C) $\begin{pmatrix} 4 & 3 \\ 11 & -14 \end{pmatrix}$ (D) $\begin{pmatrix} 8 & 1 \\ 3 & 4 \end{pmatrix}$ (E) $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$
- The value of the determinant $\begin{vmatrix} bc & ca & ab \\ a^3 & b^3 & c^3 \end{vmatrix}$ is $\begin{vmatrix} \frac{1}{a} & \frac{1}{b} & \frac{1}{c} \end{vmatrix}$ 31.
 - (A) $a^5 1$

- (B) $a^2bc + ab^2c + abc^2$ (C) ab(a+b+c)

- (D) $a^4b^4c^4(a+b+c)$
- (E) 0
- If the matrix $\begin{bmatrix} 1 & 2 & -1 \\ -3 & 4 & k \\ -4 & 2 & 6 \end{bmatrix}$ is singular, then the value of k is equal to 32.
 - (A) 3
- (B) 4
- (C) 5

9

- 33. If $\begin{bmatrix} -1 & 3 \\ 4 & -5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -1 & 19 \\ \alpha & -27 \\ 0 & 14 \end{bmatrix}$, then the value of α is

 (A) 5 (B) 4 (C) 7 (D) -14 (E) -5
- 34. If $A^{-1} = \frac{1}{11} \begin{pmatrix} -3 & 4 \\ 5 & -3 \end{pmatrix}$, then A =(A) $\frac{-1}{11} \begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (B) $\frac{1}{11} \begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 3 & -4 \\ -5 & 3 \end{pmatrix}$
 - (D) $\begin{pmatrix} 3 & 4 \\ 5 & 3 \end{pmatrix}$ (E) $\begin{pmatrix} -3 & 4 \\ 5 & -3 \end{pmatrix}$
- 35. The system of equations

$$x + y + 2z = 4$$

 $3x + 3y + 6z = 17$
 $5x - 3y + 2z = 27$

has

(A) no solution

- (B) finitely many solutions
- (C) infinitely many solutions
- (D) unique and trivial solution
- (E) unique and non-trivial solution

- The smallest prime number satisfying the inequality $\frac{2n-3}{3} \ge \frac{n-1}{6} + 1$ is 36.
 - (A)2
- (B)3
- (C) 5
- (D) 7
- (E) 11
- The number of integers satisfying the inequality $|n^2 100| < 50$ is 37.
 - (A) 5
- (B)6
- (C) 12
- (D) 8.
- (E) 10
- The solution set of the rational inequality $\frac{x+9}{x-6} \le 0$ is 38.
 - (A) $(-\infty,9)\cup(6,\infty)$
- (B) $(-\infty,9] \cup (6,\infty)$ (C) $(-\infty,9] \cup [6,\infty)$

(D) [-9,6)

- (E) (-9,6]
- 39. Which of the following sentences is/are statement(s)?
 - (i) 10 is less than 5.
 - (ii) All rational numbers are real numbers.
 - (iii) Today is a sunny day.
 - (A) (i), (ii) and (iii)
- (B) (i) and (ii) only
- (C) (i) and (iii) only

- (D) (ii) and (iii) only
- (E) (i) only

- The value of θ with $0 \le \theta \le 90^{\circ}$ and $\sin^2 \theta + 2\cos^2 \theta = \frac{7}{4}$ is equal to 40.
 - (A) 15°
- (B) 30°

- (E) 75°
- The value of $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 88^\circ + \sin^2 89^\circ$ is equal to 41.

 - (A) $\frac{45}{2}$ (B) $\frac{49}{2}$ (C) $\frac{89}{2}$ (D) 45
- (E)89
- The value of $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8}$ is equal to 42.
- (A) $\frac{5}{8}$ (B) $\frac{3}{4}$ (C) $\frac{3}{\sqrt{2}}$ (D) $\frac{3}{8}$ (E) $\frac{5}{4}$
- The value of $\sin(45^{\circ} + \theta) \cos(45^{\circ} \theta)$ is equal to 43.
 - (A) 1
- (B) $\cos \theta$
- (C) $\sin \theta$
- (D) $2\cos\theta$ (E) 0
- The values of x in $0 \le x \le \pi$ such that $\cos 2x = \cos x$ are 44.

 - (A) 0 and $\frac{2\pi}{3}$ (B) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ (C) 0 and $\frac{\pi}{3}$
- (D) $\frac{\pi}{4}$ and $\frac{\pi}{3}$ (E) 0 and $\frac{\pi}{2}$

- The value of $10 \tan(\cot^{-1} 3 + \cot^{-1} 7)$ is equal to 45.
 - (A)3
- (B)5
- (C)7
- (D) 9
- (E) 10
- If $\tan x + \tan y = \frac{5}{6}$ and $\cot x + \cot y = 5$, then $\tan (x + y)$ is 46.

- $\frac{\sin 91^{\circ} + \sin 1^{\circ}}{\sin 91^{\circ} \sin 1^{\circ}} =$ 47.

 - (A) tan 46° (B) cot 46°
- (C) sin 46°
- (D) cos 46°
- (E) 1

- The value of $\cos\left(\cos^{-1}\frac{1}{5} + 2\sin^{-1}\frac{1}{5}\right)$ is equal to 48.
 - $(A)\frac{4}{5}$

49.	The equation o	f the line passing t	hrough the point ((-3,7) with slope	e zero is		
	(A) $x = 7$	(B) $y = 7$	(C) $x = -3$	(D) $y = -3$	(E) $x = 0$		
50.	The line $y = mx + 2$ intersects the parabola $y = ax^2 + 5x - 2$ at $(1, 5)$. Then the value						
	of $a+m$ is eq	qual to					
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5		

- 51. If the points P(7,5), Q(a,2a) and R(12,30) are collinear, then the value of a is equal to
 - (A) 5 (B) 6 (C) 8 (D) 9 (E) 10
- 52. If the straight lines 4x+6y=5 and 6x+ky=3 are parallel, then the value of k is equal to
 - (A) $\frac{-2}{3}$ (B) 8 (C) 9 (D) 10 (E) $\frac{3}{2}$
- 53. If (a,2) is the point of intersection of the straight lines y = 2x 4 and y = x + c, then the value of c is equal to
 - (A) -1
- (B) 3
- (C) -2
- (D) -3
- (E) 1

- The maximum value of z = 7x + 5y subject to $2x + y \le 100$, $4x + 3y \le 240$, 54. $x \ge 0$, $y \ge 0$ is
 - (A) 350
- (B) 380
- (C) 400
- (D) 410
- (E)420
- A circle with centre at (3, 6) passes through (-1,1). Its equation is 55.
 - (A) $x^2 + y^2 6x 12y + 3 = 0$
- (B) $x^2 + y^2 + 6x 10y + 3 = 0$
- (C) $x^2 + y^2 3x 6y + 1 = 0$ (D) $x^2 + y^2 + 5x + 9y + 5 = 0$
- (E) $x^2 + y^2 6x 12y + 4 = 0$
- The centre and radius of the circle $x^2 + y^2 4x + 2y = 0$ are 56.
 - (A) (2,-1) and 5
- (B) (4, 2) and $\sqrt{20}$ (C) (2,-1) and $\sqrt{5}$

- (D) (-2, 1) and 5
- (E) (-2, 1) and $\sqrt{5}$
- The equation of the circle whose radius is $\sqrt{7}$ and concentric with the circle 57. $x^2 + y^2 - 8x + 6y - 11 = 0$ is
 - (A) $x^2 + y^2 8x + 6y + 7 = 0$
- (B) $x^2 + y^2 8x + 6y + 18 = 0$
- (C) $x^2 + y^2 8x + 6y 4 = 0$
- (D) $x^2 + y^2 8x + 6y 18 = 0$
- (E) $x^2 + y^2 8x + 6y 7 = 0$

- The vertex of the parabola $y = x^2 2x + 4$ is shifted p units to the right and then q units up. If the resulting point is (4, 5), then the values of p and q respectively are (A) 2 and (B) 3 and (B) 3 and (C) 5 and (D) 3 and (D) 3 and (D) 3 and (D) 3
- 59. The vertex of the parabola y = (x-2)(x-8) + 7 is (A) (5, 2) (B) (5, -2) (C) (-5, -2) (D) (-5, 2) (E) (2, 8)
- 60. The major and minor axis of the ellipse $400x^2 + 100y^2 = 40000$ respectively are
 (A) 100 and 20
 (B) 20 and 10
 (C) 40 and 20
 - (D) 400 and 100 (E) 16 and 8
- 61. The eccentricity of the ellipse $x^2 + \frac{y^2}{4} = 1$ is
 - (A) $\sqrt{3}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{4}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\frac{1}{\sqrt{3}}$
- 62. The latus rectum of the hyperbola $3x^2 2y^2 = 6$ is
 - (A) $\frac{3}{\sqrt{2}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{\sqrt{3}}$ (D) 3 (E) $3\sqrt{2}$

- If $\vec{u} = \hat{i} 3\hat{j} + 2\hat{k}$ and $\vec{v} = 2\hat{i} + 4\hat{j} 5\hat{k}$, then $|\vec{v} \times \vec{v}|^2 + |\vec{v} \times \vec{v}|^2 = 1$ 63. (A) 640 (B) 630 (C) 690
- The direction cosines of the vector $\hat{i} 5\hat{j} + 8\hat{k}$ are
 - (A) $\left(\frac{1}{\sqrt{10}}, \frac{-5}{\sqrt{10}}, \frac{8}{\sqrt{10}}\right)$ (B) $\left(\frac{1}{3\sqrt{10}}, \frac{-5}{3\sqrt{10}}, \frac{8}{3\sqrt{10}}\right)$ (C) $\left(\frac{1}{3}, \frac{-5}{3}, \frac{8}{3}\right)$
 - (D) $\left(\frac{1}{3\sqrt{10}}, \frac{-1}{3\sqrt{10}}, \frac{1}{3\sqrt{10}}\right)$ (E) $\left(\frac{1}{3\sqrt{10}}, \frac{5}{3\sqrt{10}}, \frac{8}{3\sqrt{10}}\right)$
- If $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and θ is the angle between them, then $\tan \theta = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and θ is the angle between them, then $\tan \theta = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and θ is the angle between them, then $\tan \theta = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\theta = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\theta = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\theta = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\theta = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{j} \hat{k}$, $\theta = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\theta = \hat{i} + \hat{i}$ 65.

- (A) $\frac{\sqrt{38}}{4}$ (B) $\frac{\sqrt{26}}{4}$ (C) $\frac{\sqrt{26}}{5}$ (D) $\frac{\sqrt{26}}{6}$ (E) $\frac{\sqrt{38}}{6}$
- The value of λ such that the vectors $2\hat{i} \hat{j} + 2\hat{k}$ and $3\hat{i} + 2\lambda\hat{j}$ are perpendicular is 66.

 - (A) 0 (B) 1
- (C) 2
- (D) 3
- (E) 4

- The values of α so that $\left|\alpha\hat{i} + (\alpha + 1)\hat{j} + 2\hat{k}\right| = 3$, are 67.
 - (A) 2, -4

- (B) 1, 2 (C) -1, 2 (D) -2, 4 (E) 1, -2
- If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$, then the value of $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b})$ is equal to 68. (B) 7 (C) 9 (D) 11 (A) 8
- Let $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = \lambda\hat{j} + 3\hat{k}$. If the projection of \vec{a} on \vec{b} is equal to the 69. projection of \overrightarrow{b} on \overrightarrow{a} , then the values of λ are
 - (A) $\pm \sqrt{7}$
- (B) $\pm \sqrt{3}$ (C) ± 5
- (E) $\pm \sqrt{5}$
- If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $|\vec{a} \cdot \vec{b}| = 4$, then $|\vec{a} \vec{b}|$ is equal to 70.
 - $(A)\sqrt{5} \qquad (B)\sqrt{7}$
- (C) $\sqrt{6}$ (D) 5
- (E)6
- Which one of the following points lies on the straight line $\frac{x-1}{2} = \frac{y+1}{4} = \frac{z-2}{-2}$? 71.
 - (A) (2, 6, -2) (B) (4, 3, 1)
- (C) (3, 4, -1) (D) (3, 3, 0) (E) (6, 2, -1)

- A plane passes through the point (0, 1, 1) and has normal vector $\hat{i} + \hat{j} + \hat{k}$. Its equation
 - (A) x + y + z = 1

(D) y + z = 2

- (E) y + z = 1
- The distance of the point (4, 2, 3) from the plane $\vec{r} \cdot (6\hat{i} + 2\hat{j} 9\hat{k}) = 46$ is 73.
 - $(A)\frac{23}{5}$
- (B) $\frac{46}{11}$ (C) $\frac{45}{11}$ (D) $\frac{11}{45}$ (E) $\frac{5}{23}$
- The sum of the intercepts made by the plane $\vec{r} \cdot (3\hat{i} + \hat{j} + 2\hat{k}) = 18$ on the co-ordinate 74. axes is
 - (A) 30
- (B) 18 (C) 33 (D) 36

- The point at which the line $\frac{x-2}{1} = \frac{y-4}{-5} = \frac{z+3}{4}$ intersects the xy-plane is 75.
 - (A) $\left(\frac{11}{4}, \frac{1}{4}, 0\right)$ (B) $\left(\frac{5}{4}, \frac{1}{4}, 0\right)$ (C) $\left(\frac{11}{4}, \frac{3}{4}, 0\right)$ (D) $\left(\frac{7}{4}, \frac{1}{4}, 0\right)$ (E) $\left(\frac{11}{4}, \frac{7}{4}, 0\right)$

The Cartesian equation of the line passing through the points (1, -1, 2) and (7, 0, 5) is 76.

(A)
$$\frac{x-1}{4} = \frac{y+1}{1} = \frac{z-2}{2}$$
 (B) $\frac{x-7}{1} = \frac{y}{-1} = \frac{z-5}{2}$ (C) $\frac{x-1}{7} = \frac{y+1}{1} = \frac{z-2}{5}$

(B)
$$\frac{x-7}{1} = \frac{y}{-1} = \frac{z-5}{2}$$

(C)
$$\frac{x-1}{7} = \frac{y+1}{1} = \frac{z-2}{5}$$

(D)
$$\frac{x-1}{6} = \frac{y+1}{1} = \frac{z-2}{3}$$
 (E) $\frac{x-7}{6} = \frac{y}{-1} = \frac{z-5}{3}$

(E)
$$\frac{x-7}{6} = \frac{y}{-1} = \frac{z-5}{3}$$

The angle between the planes x + y + z = 1 and x - 2y + 3z = 1 is 77.

$$(A)\cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \qquad (B)\cos^{-1}\left(\frac{5}{\sqrt{42}}\right) \qquad (C)\cos^{-1}\left(\frac{3}{\sqrt{42}}\right)$$

(B)
$$\cos^{-1}\left(\frac{5}{\sqrt{42}}\right)$$

(C)
$$\cos^{-1}\left(\frac{3}{\sqrt{42}}\right)$$

(D)
$$\cos^{-1}\left(\frac{1}{\sqrt{42}}\right)$$

$$(E)\cos^{-1}\left(\frac{4}{\sqrt{42}}\right)$$

The equation of the plane passing through the intersection of the planes 78.

x + 2y - z = 3 and x + y - 3z = 5 and passing through the point (1, -1, 0) is

(A)
$$x + 7y + 6z + 6 = 0$$

(B)
$$x - 6y - 7z + 5 = 0$$

(B)
$$x-6y-7z+5=0$$
 (C) $x+7y+6z+5=0$

(D)
$$x + 6y - 7z - 5 = 0$$

(E)
$$x + 6y + 7z + 5 = 0$$

79.	the class, the		of the remaining		students left out of Then the average
	(A) 62	(B) 72	(C) 70	(D) 52	(E) 60
80.				hich are numbered the top faces being	2, 3, 5, 7, 11, 13, a prime number is
	(A) $\frac{1}{6}$	(B) $\frac{5}{36}$	$(C)\frac{1}{18}$	(D) $\frac{1}{9}$	$(E)\frac{1}{12}$

81. Three different numbers are chosen at random from the set {1, 2, 3, 4, 5} and arranged in increasing order. The probability that the resulting sequence is an A.P. is

(A) $\frac{1}{2}$ (B) $\frac{3}{10}$ (C) $\frac{1}{5}$ (D) $\frac{1}{10}$ (E) $\frac{2}{5}$

82. In an examination, 20% of the students scored 70 marks, 40% scored 80 marks, 30% scored 90 marks and the rest scored 100 marks. Then the mean score of the students is

- (A) 82
- (B) 85
- (C) 83
- (D) 90
- (E) 93

- 83. If A and B are mutually exclusive events such that p(A) = 0.5 and $p(A \cup B) = 0.75$, then P(B) is equal to

 (A) 0.4 (B) 0.25 (C) 0.5 (D) 0.6 (E) 0.75
- 84. A jar contains 7 black balls, 6 yellow balls, 4 green balls and 3 red balls. All of them are of same size and weight. If a ball is drawn at random, then the probability of the ball being red is
 - (A) $\frac{1}{5}$ (B) $\frac{3}{20}$ (C) $\frac{1}{10}$ (D)
- 85. Let the probability distribution of a random variable X be given by

X	dos-Ladi	0		2	3
p(X)	a	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>	5a

Then the expectation of X is

- (A) $\frac{1}{5}$
- (B) $\frac{1}{3}$
- (C) $\frac{2}{3}$
- (D) $\frac{4}{15}$
- (E) $\frac{5}{3}$

86. Let
$$f(x) = \begin{cases} 1-5x, & \text{if } x < -2\\ x^2 - 2x, & \text{if } -2 \le x \le 1\\ -1 + 2x, & \text{if } x > 1. \end{cases}$$

Then the value of f(-1) is equal to

$$(A) - 3$$

$$(C) -1$$

87. The general solution of
$$\frac{dy}{dx} = \frac{2x - y}{x + 2y}$$
 is given by

(A)
$$x^2 - y^2 - xy = C$$

(B)
$$x^2 + y^2 + xy = C$$

(C)
$$x^2 + 2y^2 + y + x = C$$

(D)
$$2x^2 + y^2 + xy + y = C$$

(E)
$$x^2 - y^2 - xy + x = C$$

88.
$$\lim_{x \to 3} \frac{e^{x-3} - x + 1}{x^2 - \log(x-2)}$$
 is equal to

(A)
$$\frac{-1}{3}$$
 (B) $\frac{-2}{9}$

(B)
$$\frac{-2}{9}$$

(C)
$$\frac{-1}{2}$$

(D)
$$\frac{-1}{4}$$

(E)
$$\frac{-1}{9}$$

- $\lim_{x \to 4} \frac{\sqrt{x^2 + 9 5}}{x 4}$ is equal to

 - (A) $\frac{2}{5}$ (B) $\frac{8}{25}$
- (C) 0

Let $f(x) = \begin{cases} cx^2 + 2x, & \text{if } x < 2\\ 2x + 4, & \text{if } x \ge 2 \end{cases}$ 90.

If the function f is continuous on $(-\infty,\infty)$, then the value of c is equal to

- (A) 4

- $\lim_{x \to 0} \frac{x^{100} \sin 7x}{(\sin x)^{101}} \text{ is equal to}$ 91.

 - (A) 7 (B) $\frac{1}{7}$
- (C) 14
- (D) 1
- Let $f(x) = \frac{5}{2}x^2 e^x$. Then the value of c such that f''(c) = 0 is 92.
 - (A) 1
- (B) log 5
- (C) 5e
- (D) e^{5}
- (E) 0

If $y = (\cos x)^{2x}$, then $\frac{dy}{dx}$ is equal to 93.

- (A) $2(\cos x)^{2x}(\sin x x \tan x)$ (B) $2(\cos x)^{2x}[\log(\cos x) + x \tan x]$
- (C) $2(\sin x)^{2x} [\log(\cos x) x \tan x]$ (D) $2(\sin x)^{2x} x \cot x$
- (E) $2(\cos x)^{2x} \left[\log(\cos x) x \tan x \right]$

If $x^3 + 2xy + \frac{1}{3}y^3 = \frac{11}{3}$, then $\frac{dy}{dx}$ at (2, -1) is 94.

- (A)-2 (B) 2
- (C) 5
- (D) 5

Let $f(x) = \begin{cases} x^2, & \text{for } x \le 1\\ 1, & \text{for } 1 < x \le 3\\ 5 - 2x, & \text{for } x > 3 \end{cases}$ 95.

Then f'(6) is equal to

- (A) -7
- (B) 3

Given $F(x) = (f(g(x)))^2$, g(1) = 2, g'(1) = 3, f(2) = 4 and f'(2) = 5. Then the 96. value of F'(1) is equal to

- (A) 25
- (B) 100

- (C) 75 (D) 50 (E) 120

- If $y = 2 + \sqrt{u}$ and $u = x^3 + 1$, then $\frac{dy}{dx} =$ 97.
- (A) $\frac{x^2}{2\sqrt{x^3+1}}$ (B) $\frac{3x^2}{\sqrt{x^3+1}}$ (C) $\frac{3x^2}{2\sqrt{x^3+1}}$
- (D) $3x^2\sqrt{x^3+1}$
- (E) $x^2 \sqrt{x^3 + 1}$
- The equation of the tangent to $y = -2x^2 + 3$ at x = 1 is 98.
 - (A) v = -4x

- (B) y = -4x + 5

- (D) y = 4x + 5
- The function f given by $f(x) = x^3 e^x$ is increasing on the interval 99.
 - $(A) (0, \infty)$
- (B) $(3, \infty)$
- (C) $(-3, \infty)$
- (D) (-3, 3)
- Let $f(x) = \sqrt{x}$, $4 \le x \le 16$. If the point $c \in (4, 16)$ is such that the tangent line to the 100. graph of f at x = c is parallel to the chord joining (16, 4) and (4, 2), then the value of cis
 - (A) 7
- (B) 9
- (D) 11
- (E) 14
- The function f given by $f(x) = (x^2 3)e^x$ is decreasing on the interval 101.
 - $(A) (-3, \infty)$
- (B) (1, ∞)
- (C) $(-\infty, 1)$ (D) $(-\infty, -3)$

The equation of normal to the curve $y = \frac{2}{x^2}$ at the point on the curve where x = 1, is 102.

(A)
$$4y - x - 7 = 0$$

(B)
$$y-4x+2=0$$

(C)
$$4y+x-9=0$$

(D)
$$y-x-1=0$$

(E)
$$4y + x + 7 = 0$$

The local minimum value of the function f given by $f(x) = x^2 - x$, $x \in \mathbb{R}$, is 103.

(A)
$$\frac{1}{2}$$

(B)
$$\frac{1}{4}$$

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{4}$ (C) $\frac{-1}{4}$ (D) $\frac{3}{4}$ (E) $\frac{-1}{2}$

(D)
$$\frac{3}{4}$$

(E)
$$\frac{-1}{2}$$

104. $\int 3x^2(x^3+1)^{10} dx =$

(A)
$$\frac{(x^3+1)^{11}}{11} + C$$
 (B) $\frac{(x^3+1)^9}{9} + C$ (C) $\frac{(x^3+1)^{11}}{33} + C$

(B)
$$\frac{(x^3+1)^9}{9} + C$$

(C)
$$\frac{(x^3+1)^{11}}{33}+C$$

(D)
$$\frac{(x^3+1)^{11}}{11} + x^3 + C$$
 (E) $\frac{(x^3+1)^{11}}{10} + C$

(E)
$$\frac{(x^3+1)^{11}}{10}+C$$

105. $\int \frac{2x + \sin 2x}{1 + \cos 2x} dx = 0$

(A)
$$x^2 \sec x + C$$

(B)
$$x + \tan x + C$$

(C)
$$x^2 \tan x + C$$

(D)
$$x \sec x + C$$

(E)
$$x \tan x + C$$

106.
$$\int \frac{1}{x^2 - 25} \, dx =$$

(A)
$$\log \left| \frac{x-5}{x+5} \right| + C$$

(B)
$$\log \left| \frac{x+5}{x-5} \right| + C$$

(A)
$$\log \left| \frac{x-5}{x+5} \right| + C$$
 (B) $\log \left| \frac{x+5}{x-5} \right| + C$ (C) $\frac{1}{5} \log \left| \frac{x-5}{x+5} \right| + C$

(D)
$$\frac{1}{10} \log \left| \frac{x-5}{x+5} \right| + C$$
 (E) $\frac{1}{5} \log \left| \frac{x+5}{x-5} \right| + C$

(E)
$$\frac{1}{5} \log \left| \frac{x+5}{x-5} \right| + C$$

$$107. \qquad \int \frac{1}{x(\log x)} \, dx =$$

(A)
$$\log |\log x| + C$$

(B)
$$\frac{\left(\log|x|\right)^2}{2} + C$$

(C)
$$\log |x| + C$$

(D)
$$\frac{1}{\log|x|} + C$$

$$(E) \frac{1}{\left(\log|x|\right)^2} + C$$

$$108. \qquad \int e^x \sec x \left(1 + \tan x\right) dx =$$

(A)
$$e^x \tan x + C$$

(B)
$$e^x + \sec x + C$$

(C)
$$e^{-x} \sec x + C$$

(D)
$$e^x + \tan x + C$$

(E)
$$e^x \sec x + C$$

$$109. \qquad \int \frac{1}{x + \sqrt{x}} \, dx =$$

(A)
$$\log \left| 1 + \sqrt{x} \right| + C$$

(B)
$$2\log |1 - \sqrt{x}| + C$$

(C)
$$\log \left| 1 - \sqrt{x} \right| + C$$

(D)
$$2\log |1 + \sqrt{x}| + C$$

(E)
$$2\log|x+\sqrt{x}|+C$$

110.
$$\int \sec^2(5x-1) \ dx =$$

- (A) $\frac{1}{5}\tan(5x-1) + C$ (B) $5\tan(5x-1) + C$
- (C) $\tan(5x-1) + C$

- (D) $\cot(5x-1) + C$
- (E) $\frac{1}{5}\cot(5x-1) + C$

111.
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot^4 x} \, dx =$$

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$
- (C) π

112. The value of
$$\int_{-10}^{10} (0.0002x^3 - 0.3x + 20) dx$$
 is equal to

- (A) 423
- (B) 400
- (C)378
- (D) 410
- (E)390

113. The area enclosed by the curve
$$x = 3\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta \le \pi$, is (in square units)

- $(A)9\pi$
- $(B)6\pi$
- $(C)4\pi$
- (D) 3π
- (E) 2π

- 114. The area of the region bounded by y = |x|, y = 0, x = 3 and x = -3 is (in square units)
 - (A)3
- (B) 6
- (C)7
- (D) 9
- (E) 10

- 115. The value of $\int_{e}^{e^{2}} \frac{1}{x} dx$ is equal to
 - (A) e
- (B) 1
- (C) e^2
- (D) $e^2 e^2$
- (E) 0

- 116. $\int_{-3}^{3} |x+2| \ dx =$
 - (A) 17
- (B) 9
- (C) 14
- (D) 13
- (E) 12
- 117. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \sqrt{x^2 + \left(\frac{dy}{dx}\right)^{3/2}} = 0$ are respectively
 - (A) 2, 4
- (B) 2, 3
- (C) 2, 2
- (D) 3, 4
- (E) 4, 3

The general solution of the differential equation $xy' + y = x^2$, x > 0 is 118.

(A)
$$y = \frac{x^2}{2} + Cx$$
 (B) $y = \frac{x^3}{3} + C$ (C) $y = \frac{x^2}{3} + C$

(B)
$$y = \frac{x^3}{3} + C$$

(C)
$$y = \frac{x^2}{3} + C$$

(D)
$$y = \frac{x^3}{3} + \frac{C}{x}$$
 (E) $y = \frac{x^2}{3} + \frac{C}{x}$

(E)
$$y = \frac{x^2}{3} + \frac{C}{x}$$

The integrating factor of the differential equation $3xy' - y = 1 + \log x$, x > 0 is 119.

(A)
$$\log x$$

(B)
$$\frac{1}{r}$$

(C)
$$x^{-1/3}$$

(B)
$$\frac{1}{x}$$
 (C) $x^{-1/3}$ (D) $\frac{1}{x^3}$ (E) $x^{1/3}$

(E)
$$x^{1/3}$$

Elimination of arbitrary constants A and B from $y = \frac{A}{x} + B$, x > 0 leads to the 120. differential equation

(A)
$$x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$$

(A)
$$x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$$
 (B) $x^2 \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} = 0$ (C) $x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$

(C)
$$x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$$

(D)
$$x\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 0$$

(E)
$$x \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$$

BLANK PAGE

SEAL